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ABSTRACT

We derive the covariance function of elevations on
a plane planetary surface which has been excavated by primary
meteoritic impact craters, according to various models of
crater size and shape, and an assumed inverse power law meteor
mass distribution. At distances less than the diameter of the
smallest crater, the shape of the covariance function reflects
crater geometry rather than meteor mass distribution, being
linear for cylindrical craters and parabolic for paraboloidal
craters. At small and moderate distances the covarlance
function has roughly the form suggested by Chernov. The derived
functions can be used in studies requiring statistical char-
acterization of lunar surface roughness, such as mobility of

lunar roving vehicles or interpretation of radar power returns.
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COVARIANCE FUNCTION OF ELEVATIONS
ON A CRATERED PLANETARY SURFACE

PART I

CrRATER BOWL CONTRIBUTION
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In discussing the elevations of an unknown surface,
it is often convenient to treat these elevations as a sample
realization of a surface generated by a random process. If
the random process is a gaussian process, or derived from a
gaussian process, the statistical structure of the process is
determined completely by its covariance function. Let the
elevation of the surface at a point R be denoted by Z(R), and
let E{-} denote mathematical expectation (average over all
possible realizations). The covariance function ¢, of eleva-
tions at R and R+r 1s then defined by the function

¢ = E{Z(R)Z(R+r)} - E{Z(R)IE{Z(R+r)} (1)

If the surface is stationary (homogeneous) and isotropic, this

function is the same for any points separated by a distance
(length of r), thus ¢ = c¢(r) is a function of the distance

r only, not of R or of the direction in which r 1s measured.

We assume the homogeneity of isotropy of the Z(R) process from

now on.

Two significant uses of the covariance function have
already been explored. The mean square amplitude of the power
reflected by a planetary surface from a radio or radar signal
can be easily related to the covariance function of the pro-
cess, if the process is gaussian, or derived from a gaussian
process by censoring (see, e.g., Beckmann and Spizzichino (1963)
or Marcus (1967a)). In this application, it is sometimes suffi-
cient to use only a single number derived from c(r), the

mean square slope = q2 = -4° c(r)/dr2]r

assuming c(r) is in fact twice differentiable at r = O.
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A second application has been mentioned by Jaeger and
Schuring (1966), who also estimated c(r) directly from Ranger 7
photographs of Mare Cognitum. If a lunar vehicle responds to
differences in surface elevation as a "linear filter" of the
elevations, then the mean square amplitude of vibration power
at given frequency (spatial wave number) w is an easily computed
function of the spectral density

,’ iw 1% + iw2X2
S(w) = | j c(r)dx,dx (3)
J 1772
. . _ 2 1/2
where, using the assumed isotropy, w = (wl 2) and

2)1/2
5 .

The only attempt to derive c{r) from first principles
has been that of Chernov (1967). Since some of his methods
figure prominently in our own treatment, we will discuss his
analysis in greater detall.

r = (xi + X The function c(r) is needed here too.

2.0 CHERNOV'S ANALYSIS

An attempt to derive the spectral density S(w) (equiva-
lently, its inverse Fourier transform c(r)) has been made by
Chernov (1967). He assumes that an initally plane surface is
damaged by primary impact craters, and that the surface eleva-
tion changes resulting from the formatlon of craters add
linearly. That is, the elevation at a point is the sum um of all
the elevation changes resulting from crater formation anywhere
on the surface (Figure 1). This is not strictly true, as he
points out, since the formation of a large crater will destroy
all smaller features within its perimeter (possibly outside as
well, as a consequence of the deposition of a thick layer of
ejected debris near the crater rim). A correction for the loss
of small features by obliteration is thus needed. The eleva-
tion changes will also depend on the elevation of the point at
which the crater-forming meteorite impacted on the surface,
which 1s in general different from the elevation at the point
of interest.

Chernov also assumed some similarity principles in
the formation of craters which, though possibly Justifiable,
are too restrictive. He assumes first that the depths of
craters are proportional to their diameters, the constant of
proportionality being the same number n = 0.2. He also

assumes that the volume of the crater is proportional to the
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energy of the impact. These assumptlons are valid for small
craters, but almost certainly fall for craters larger than a
few kilometers in diameter (see, e.g., Marcus (1967b) or
Chabai (1965) for details).

He finally assumes that the number density of
diameters of craters on the surface directly reflects the
number density of meteorite masses. For the meteorite mass
number density he assumes an inverse power law with index Y1

v
(number of meteors with mass > m) = (const.)/m 1 (4)

(his s = y1+1 in our notation). The assumptions that the

depth-diameter ratio of craters is constant, and that crater
volume is proportional to the kinetic energy of the impacting
meteorite, enable him to derive the one-dimensional spectral
density

o

S(w) = elor c(r)dr = (const.)/wS_Y (large w) (5)

where

Yy = 3Y1 (6)

The constant is not evaluated numerically in terms of basic
physical parameters.

On the other hand, in the one-dimensional case

S(w) = (const.) w " [for u large (7)

and 1 < u < 3,u # 2

3

c(r) = c(0) - (const.) L 4 o(rbTl) for r small (8)
whawrae AlNY = n/\q\l

nEEEE MY “\Yl0y = 0 and o(x) is any function for which

1im o(x)/x = 0

x>0

For uw = 2 and p» = 3, and all ¢ > 0,

(9)
c(r) = c(0) - o(r"~178)
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If in (7) uw > 3, then in the one-dimensional case
e(r) = c(0) - g°r2/2 + o(r°) (10)

where q2 is the m.s. slope. These conditions are easily
checked according to the value of

W=5 -3y (11)

In practice, the special values u = 2 and p = 3 are not
distinctive.

We will follow Chernov's basic idea, with the
following changes: we will work in the spatial domaln where
the basic physical processes occur, rather than in the fre-
quency domain. We will consider the effects of crater shape
(which he ignores). We will remove some restrictions on the
constancy of the crater depth-diamefer and impact energy-
volume ratios. We will treat the effect of the destruction
of small craters by larger ones. The linear superposition
principle and the inverse power law (4) we will retain.

3.0 MATHEMATICAL FOUNDATIONS

A basic mathematical formalism for such processes
has been described by Matern (1960). We assume that elevation
changes add linearly, and that the surface elevation Z(R) at
point R has a representation N

2(R) = [20x,0) A, Rer) (12)

where dN(x,R+r) is a random variable, the number of craters of
diameter x to x+dx in a small region d(R+tr) centered on the
naint R4+r and er r) ic the elevation Eh;ncre caused bv 3
point R+r, and z{x,r) is the eleva ang au vy a
crater of diameter x which is formed at a distance r = (length
of r) away from R. The integration extends over all values of

X and r.
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If craters are formed by primary impacts only, we
can reasonably assume that dN(x,r) is a Poisson random varia-
ble with mean value

E{aN(x,r)} = g(x) dx dr (13)

The function £(x) is the expected number of craters of dia-
meter x, per unit area per unit diameter interval.

The correlation function c¢(r) is then readily
derived (Matern, 1960),

c(r) i/P E(X)dXJr[;(X,rl) c(x,ry) Uz(rl,rz;r) dr,dr, (1h)
J
(o]

where Vg(rl,rz;r) is defined by

2

- R
vol(rsToiT) = 5757

V,o(r,,rs3r) (15)
1975 2 71272

V2(r1,r2;r) is the area in the intersection of two circles of
radii r., and r, respectively, whose centers are a distance r

1
apart. Since

2l ] 2 : ]
V2(rl,r2,r) = ry [2 -0y l-pl - arcsin le
| 2f -/ > 2 (10
m .
+ r, Lg - Ps l—p2 - arcsin P
where
5 5 S /
Py = krl tr°o-r, }//2r ry
(17)
_ 2 2 ;2)//
Py (r2 tr -1y 2r r,
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we obtain

> . - 2.2 2 2 2
vg(rl,r2,r) urlr2/[ﬁrl r2 - (rl +r2 ~-r ) j (18)

for

In the remainder of the paper the following trans-
formations will be useful:

u =r + r

1 2

(19)
v=r -r,

v,(u,vir) = v (r,,r, ;r) Jacobiani/rl,rz)
217202 2 12722 \ u,v
1 u2 - v2
vg(u,v;r) 5 — — for - r<v<r (20)
\/ 2 2 2 2
u- - r r° - v r<u

thus

c(r) =‘[£(x)dqurc(x,(u+v)/2) z(x,(u=-v)/2) vg(u,v;r)du dv
(21)

After defining the basic physical model functions, we will
work out some particular cases of (21).

In order to correctly compute the asymptotic power
spectral density function S(w), we must recognize that we are
working in two dimensions. In the isotropic case,

, r iUL-X~+j-w~X2
j | e 14 < c(r)dxldx2

S(w)

(22)

r
21Tj Jgur) c(r)rdr
0
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where

and JO(Z) is the zeroEE order Bessel function of the first kind
(Matern (1960), Eq. 2.3.8). Assuming again that for small r

u=-1

c(r) = ¢(0) —(const)ru_1+o(r ) (8)

we can derive from (22), in the same way that (7) was obtained,
that for large w

S(w)=(const)y (ML (23)

Note that S(w) should not be confused with the radial spectral
density function qz(w), defined by

qg(“’) = 2n10S(w).

For vehicle trafficability purposes we are actually
more interested in the spectral density of a linear traverse,
say Sl(wl), which corresponds to a straight-line path on the

surface parallel to the x4 axis. Thus, in the (wl,w2) plane,

fixing w, but not w or Wy

1
Sl(wl) = f S(w)dw2

2
= Jf S(w) (1-—5)  du (24)
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Ir wy is large enough that (23) applies for w > wy s then
similarly Eq. (8) with 1l<u<3 is equivalent to
S (w,)=(const) w, "
1'71 1
We see that if the behavior of c{r) for small r is given by

Eq. (8), the asymptotic spectral density of a linear traverse
behaves similarly in the one-and two-dimensional cases.

4,0 MODEL FUNCTIONS

We first derive the expected number density £(x)
corrected for obliteration. Suppose that a crater is a per-
fectly circular object whose formation destroys everything
within its perimeter, but leaves everything outside intact.
We assume that a crater is destroyed if, and only if, it is
completely covered by a larger crater. Let the probability
density function of the diameter x of a newborn crater be de-
noted p(x), and let the cumulative flux (number of craters
formed per unit area, of any size larger than some number x )
be denoted F. Then (Marcus, 1966a)

00 = 2L (1 - exp(- a(0F))

where

o
r

T - 0% pyay

X

I}

A(x)

In the particular case that

y+1

p(x) = v XOY/X if x > xg

p(x) =0 if x < Xo
then

Y
X
T 0 1 .
A = if > 2
) = 56 Gy -2 Y

so that

e(x) = 2=l L - exp(- 2 G0F))
X

(25)

(27)
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If AF << 1 then

£(x) (Y XOY F) /XY+1 if x > x

If AF >> 1 then

lie

£(x) ) Y(Y'l)(Y—z) /X3

For both a lightly cratered surface (AF << 1) and a heavily
cratered surface (AF >> 1) we have

s+1

g(x) = sC/x for x > X (29)

with index s > 2 (lightly cratered) or s = 2 (heavily
cratered), and density coefficient C = F xoY (lightly

C = Y(Y—l) (Y‘2)(

cratered) or heavily cratered). To obtain

S < 2 we must invoke internal flooding mechanisms (Marcus,

1966b).

Unfortunately, on a heavily cratered surface, the
process dN(x,R) which allocates crater centers differs some-
what from a Poisson process, since large and small craters are
negatively associated (Marcus, 1966c). We will ignore this
difficulty for the present.

The value of y in the inverse power law (24) must
now be established. It is usually assumed that the energy E
of an explosive impact and the diameter x of the crater it
forms are related by a power law

l/y2
x = (const.) E (30)
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We may accept Yo = 3 for very small craters. Chernov's simi-

larity assumptions imply this value, but for craters of g
few meters diameter and larger, a higher value of P is re-

quired. Baldwin (1963) suggests that Y5 is a slowly varying

function of x with values in the range 3.2 to 3.6. As a
rough average we accept

YQ v 3.“ (31)

(see Chabai (1965) for more details on this point).

Upon combining (4) and (30), and assuming that im-
pact velocities are not too broadly distributed, we derive an
inverse power law (27) for p(x), with

YT oYY, v 3l by (32)

The value XO corresponds to a lower cutoff on mass mO (see

(Marcus, 1967c) for discussion on this point).

It is difficult to choose a single value of Y4 for

all sizes of craters, since different lunar regions may be
characterized by bombardment from essentially different meteo-

rite populations (Marcus, 1967d). For premare craters with

X > 20 km (which may reflect the primeval planetesimals) we may re-
quire Yy v 0.62 to 0.67, thus vy ~ 2.10 to 2.27. For postmare

craters with x > 5 km we seem to require y; v~ 0.75 to 0.84,

thus y ~ 2.55 to 2.86. Very small present meteors (m < 1 gm)
seem to have y; ~ 0.88 to 1.10 (Dohnanyi, 1967) or even

Y, 1.34 (Hawkins and Upton, 1958) thus y ~ 2.64 to 4.02
(using Yo, = 3). This uncertainty cannot be resolved. It may

be necessary to make p(x) time dependent, for example with
vy = y(t) a function of time. We will not do so in this paper.

To include secondary crater formation in the model
is possible, but only at the expense of enormous analytical
complexity. We will not do so here.

It is now necessary to define the vertical relief of
a crater. 1In the remaining sections we will assume that a
crater has negative relief only, i.e., no crater rim or ejecta
blanket. These attributes will be discussed in future papers
of this series. Two assumed crater shapes will be treated, cy-
lindrical and parabolcidal. The inital depth of the true
crater bowl is assumed to be represented by a power law
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§
depth of crater bowl = T  x (33)
Chernov assumes § = 1 explicitly; this is acceptable for

x < 1 km but is not correct for very large craters, which seem
to require & ~ 0.4 to 0.5 (Baldwin (1963), Marcus (1967b)).
The value of TO also varies slightly with diameter, perhaps

T, ~ 0.19 to 0.20 for x v 10 meters and T, 0.16 for x ~ 1 km,
This problem also requires further study.
We will ignore internal processes which change crater

shape or surface relief, although these factors are clearly of
some importance.

5.0 CYLINDRICAL CRATERS

A cylindrical crater is defined by

rg(x,r) = - T x if 0 < r < x/2
O I AY
(34)
t(x,r) =0 if r > x/2
When (34) is inserted into (14) we obtain
- ~ 2,28 X X,
ee) = [etoax - 1% v\ L, L o (35)
In order to avoid convergence difficulties with the inverse
power law (29) for £(x), let us assume that £(x) is truncated
above at x
m
- sC 1
g(x) = S s+l for X <X <X
X X
1_ -
*m (36)
= 0 otherwise
Combining (35), (36) and (16), we obtain
sCT 2 Xm/P —X
- Y
c(r) = ° peted=s [ [ T & et
X S 9 rdnax(l < /r) L2y 5=-1-28 y s+1-28
2[1— —9) 7o
m (37)
_ arcsin(l/y)]dy
s+1
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with the substitution y = x/r. The last two terms of the
integrand are readily evaluated only when s and s - 268 are
integers. The table of indefinite integrals, Table 1, will
help in the evaluation of c¢(r). In Table 2 we give expli-
citly c¢(r) for § = 1, s = 2,3,4, which are sketched in
Figures 2-4.

Note that, in (37),

c{ry =0 1if r > %, (38)

An analysis of the case r-»0 enables us to compare
our results with those of Chernov. As r-0Q, xm/r+w and xo/r+w.

Since the integral in (37) exists on the domain xo/r <y < Xm/r,

we may use the fact that for sufficiently small r, the integral
differs by an arbitrarily small amount from

x /r 1 1
m {2 1-
oy 5-1-286 v g5=28 y s+2
X /r :
o
thus

c(r) = c(0) - cyr + olr) (r-0) (4o)
where ¢y is a constant (i.e., function of s, §, X and xm).
This is of the same form as (8), with uw - 1 = 1, or in the
two-dimensional case

S,(w) = (const.) w7 (o) (1)

This heavy-tailed spectral density (41) implies
that the surface is almost uniformly rough, in the sense that

local slopes %E—-Z(xl,xg) do not exist in mean square, (where
1

(Xl’XZ) are the Cartesian coordinates of R, and i = 1,2). We

will now show that this roughness is simply a consequence of

the cylindrical crater geometry.

6.0 PARABOLOIDAL CRATERS

Some small fresh craters on the Moon show a roughly
conical shape. But the most common geometry for a fresh
crater, especiglly those larger than 100 meters diameter, is
that of a spherical cap or a paraboloid. Some scilentists pre-
fer the spherical cap (the difference in any practical sense
is slight), but for analytical simplicity we will use the
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paraboloid
- P 2 .
g(x,r) = = I x [1 - (2r/x) ] if O<r<x/2
(42)
z(x,r) =0 if x/2<r
Upon inserting (42) into (21), we obtain
e(r) = g(ax - T_%x?% I(x,r)/2 (43)
where
P
_ du .
I(x,r) = - Il(u;x—u;r,x) if r<x<2r
V2 2
r VY u-r
X-r
I(x,r) = | —3% T (u;r;r,x) (bh)
VAT
r u“-r
X
+ [ __du__ Il(ugx—u;r,x) if 2r<x
= .V 2.2
X=r V u"-r
The function Il 1s defined by
o 5 o (5 UFV iy u-v
_ 7 (u=vT)av Q( >0 ‘ > D )
Il(u;a;r,x) = S 555
o 2 2 T X
= r -V (0]
(45)
- {a (u2—v2)dv 2 2 2 |2
= X ST ———— [x - (u+v) ][x - (u—v, ]
. V.2 2 - ?
—a rT-v

x I, = arcsin(o/r) {é(uz—rz)B + (ug—rz’

2

2_2

+ (uz—r2) (2xu—8x r° + %ru)

PO

2 ')

(3r2—ux2)
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It is evident that in general, the function I cannot be
similarly reduced to elementary functions. Therefore an
explicit evaluation of c(r) such as that in Table 2 1s

not possible. The following multiple integral formula may
be useful in numerical calculations (we omit the complicated

and tedious reductions):

2 xm/r

_ O 2+28-5 as
2[1_(;g) ] max(l,xo/r)y
" (47)

o(w,y) w(W,y)] dw}

y
J;x(l,y—l) [V 1—(y—wf2 V w2-1

where

o(w,y) %-w(w2—l

+ wV W2—l (yq -2 y2 + 4)

2

)5/2 + w(wg—l)

1l

3/2 (% ) y2)

and

p(w,y)

il
W
<
t
=
==
’,....1
|
D%
|
=
N
| NG

+
—
]
l
=
o
'_—l
1
o«
I
=
N
e
w
~
™
—
e«
n
-+
njw
iy
<
1
=
R
l
o b
w
—

+ (y-w) V¥ 1-(y—-v~v')wé T 3(y-W)u - 25° - l?(y-W\2+ %}

2

The transformed variables are y = x/r and w = u/r.
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In Figures 5-7 we sketch c(r) for §=1 and s=2, 3, 4.
As before, an asymptotic analysis of (47) as r-o,

thus y»>», is very instructive. We omit the straightforward
but lengthy calculations which lead to:

Y -
J[ L A AN I A (50)
— 23
7-1 V 1-(y-w)° v J
and
y
¢<W2;2)dw = O(y3)
y-1 Vwlo1
thus as r-»o, if s # 2 + 2§, s # 26
2 2+268~-8 2+28~-3 - 26~s 28~
ey = sCT - -X L2 6%, -X )
. S 6 2+28-5 S=28
0
2{1"(;—)
m
(51)
+ o(r3)}
if s = 2 + 26
2
sCT { )
_ 1) o 2 2 -2 344
c(r) N g i}og X /x - 1r° 33x "~ X ) + O(r ){ (52)
o[u-Z) |
m
if s = 26
ser ®(x Cx ® x_ Y
c(r) = 3 g’i 5 - r- 6 log i O(rJ)j (53)
X - o}
2{1-(;{-—) ]
m

where O(x) is any function fcr which 1im C(x)/x = constant.
x+0
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We thus have (8) with
u = 3 (52‘1)

which does not depend on the value of s. Therefore, for
large w, the spectral density Sl(w) decreases with increasing
w at least as fast as

(const.) w3 (55)

for all values of the parameters s, §. This appears to
disagree with Chernov's result.

7.0 DISCUSSION OF RESULTS

We have shown that for craters formed at random on
a plane surface by primary meteorite impacts, the covariance
function of elevations closer than the minimum crater diameter is

(a) 1linear for cylindrical craters
(b) parabolic for paraboloidal craters

This implies that the surface elevation is almost surely dis-
continuous for cylindrical craters. But for paraboloidal
craters, the surface is almost surely smooth in the sense that
local slopes exist in mean square. (The author conjectures
that any crater shape not involving a discontinuity would yield
a smooth surface in the above sense.) The shape of the short-
distance correlation does not depend on the indices s and § of
the crater formation model, but does seem to reflect (to some
extent, anyway) the crater geometry. This appears to disagree
with Chernov's result (7) and (11).

We must now inquire whether the above asymptotic
analysis has any valld physical uses. The asymptotic results
(40) and (51)-(53) are meaningful only if r < X . Even

though fresh impact craters smaller than one meter in diameter
do not contribute significant rims or ejecta layers, their
crater bowls add significantly to surface roughness. The
smallest actual crater depends on the size of the smallest
particles bombarding the lunar surface, which is not well de-
termined. The terrestrial satellite data of Naumann (1966)

suggests that a minimum particle mass of ].O—13 to 10_12 grams

may be acceptable. Other workers have suggested (Alvarez,
personal communication, March 20, 1968) that the data may be

compatible with a low-mass cutoff at about 10_9 grams. The
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corresponding crater diameters are, respectively, about 10—3

centimeters to 10_2 centimeters. These sizes are negligible
for surface mobility and radar astronomy applications.

The theoretical power added in replacing Xy > 0 by

X, =0 is, for the most probable values of s (i.e., v),
essentially negligible. Fixing X, = 100 and § = 1, we find
that c¢(o) with X, = 1l is only 0.1% smaller than c(o) with

. C
Xy = O when s = 2.5, only 1.0% smaller when s = 3.0, and 10%
smaller when s = 3.5. With larger X the discrepancy is even

smaller, since the larger craters contribute most to the
roughness of the surface for s < 2+28. For practical purposes
the actual value of X is not too important, and the asymptotic

analysis leading to (40) and (51)-(53) not very relevant.

We must therefore consider the behavior of c(r) for
small and moderate values of r greater than X Referring

now to Figures 2-7, we see that for either cylindrical or para-
boloidal craters, c(r) is roughly

(1) parabolic for s = 2
(2) 1linear (exponential) for s = 3
(3) M"logarithmic" for s = 4

Generalizing from these numerical cases, we conclude that the
relation (8) is justified for small r > X with

uw =23+ 28 - s (56)

which reduces to Chernov's Equation (11) when é=1, s=y, and
Y,=3.
2

However, we have carried out our analysis in a
mathematically completely rigorous fashion, using either the
same physical model as Chernov or a generalization of his
model. The difference 1s that we have worked in the space
domain using physically accurate distance interactions for
cratering events; whereas, Chernov worked in the frequency
domain, with no accurate frequency interpretation of a single
cratering event, and with coarse approximations on the number
and amplitude in the frequency domain of cratering events.

We therefore believe that our analysis is more nearly correct
and should be used in preference to that of Chernov.
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8.0 FUTURE PROBLEMS

Some extensions of the model immediately suggest
themselves. First of all, we have not considered positive
relief formation such as crater rims, ejecta blankets, boulders
and blocks. The latter are especially important at sizes of a
few meters and smaller. Vehicle mobility studies probably de-
mand such refinements.
ejected from primary craters may
itself form secondary craters This can be handled by assuming
that dN(x, R) is a first-order clustering process instead of a
Poisson process, but the resulting calculations are enormously

more complex than those we have made in this paper.

-
AL

A
A
S

In the same vein, we could use the known higher mo-
ment properties of the process dN(x,R) in the case that over-
lapping of craters is important (Marcus, 1966a, 1966c). We
conjecture that the negative correlation between the numbers of
large craters and small craters in a heavily cratered region
introduces some (probably small) periodicities in the covariance
function.

Another factor is the evolution of crater shape in
time as a consequence of erosion by micrometeorites, slumping
and mass movement, and filling by ejecta. Internal processes
such as lava flooding, subsidence, isostatic readjustment, etc.,
should also be included.

Finally, the assumption (12) that crater depths are
strictly additive can be improved. The extent to which the
surface at R 1s decreased by the formation of a crater at time
t' at point R + r depends on the elevation Z(R+r;t') at the
time and place at which the crater is formed. Thus, instead of
(12), we really have

Z(R3t) =J(C(X,P,AZ(B+§;t') dN(x,B+r,t') (57)

where Z(R;t) 1s the elevation of R at time t, t{x,r,0Z) is
the elevation change produced by the formatlon of a crater of
diameter x a distance r away when the elevation difference at
the two points at the time of formation t' is

AZ(R+r;t') = Z(R+rst') - Z(R;t") (58)
and uN\A nTi,b') is the number of craters of diameter x to

x + dx formed in d(R+r) during the time interval (tr,tr+d4t?')
where t' < t. The stochastic process Z(R;t) is obv1ously very
complicated when successive overlaps become important.

#] Narery

2015~AHM-kse A. H. Marcus
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Figure 1

Figures 2-14

Figures 5-7

CAPTIONS TO FIGURES

Hypothetical profile of the development (top

to bottom) of a cratered surface, showing super-
position (S) and erasure (E) of craters by craters
formed later.

Correlation function c{(r)/c(c) of elevations a
distance r apart on a surface altered by cylin-
drical craters, as a function of crater population
index S and maximum crater diameter X

Correlation function for paraboloidal craters as
a function of population index S and maximum

crater diameter X
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